Marginal Empirical Likelihood and Sure Independence Feature Screening.
نویسندگان
چکیده
We study a marginal empirical likelihood approach in scenarios when the number of variables grows exponentially with the sample size. The marginal empirical likelihood ratios as functions of the parameters of interest are systematically examined, and we find that the marginal empirical likelihood ratio evaluated at zero can be used to differentiate whether an explanatory variable is contributing to a response variable or not. Based on this finding, we propose a unified feature screening procedure for linear models and the generalized linear models. Different from most existing feature screening approaches that rely on the magnitudes of some marginal estimators to identify true signals, the proposed screening approach is capable of further incorporating the level of uncertainties of such estimators. Such a merit inherits the self-studentization property of the empirical likelihood approach, and extends the insights of existing feature screening methods. Moreover, we show that our screening approach is less restrictive to distributional assumptions, and can be conveniently adapted to be applied in a broad range of scenarios such as models specified using general moment conditions. Our theoretical results and extensive numerical examples by simulations and data analysis demonstrate the merits of the marginal empirical likelihood approach.
منابع مشابه
Sure Independence Screening in Generalized Linear Models with Np-dimensionality1 By
Ultrahigh-dimensional variable selection plays an increasingly important role in contemporary scientific discoveries and statistical research. Among others, Fan and Lv [J. R. Stat. Soc. Ser. B Stat. Methodol. 70 (2008) 849–911] propose an independent screening framework by ranking the marginal correlations. They showed that the correlation ranking procedure possesses a sure independence screeni...
متن کاملSURE INDEPENDENCE SCREENING IN GENERALIZED LINEAR MODELS WITH NP-DIMENSIONALITY∗ By
Princeton University and Colorado State University Ultrahigh dimensional variable selection plays an increasingly important role in contemporary scientific discoveries and statistical research. Among others, Fan and Lv (2008) propose an independent screening framework by ranking the marginal correlations. They showed that the correlation ranking procedure possesses a sure independence screening...
متن کاملSure Independence Screening with NP-dimensionality
Ultrahigh dimensional variable selection plays an increasingly important role in contemporary scientific discoveries and statistical research. A simple and effective method is the correlation screening. For generalized linear models, we propose a more general version of the independent learning with ranking the maximum marginal likelihood estimates or the maximum marginal likelihood itself. We ...
متن کاملLocal Independence Feature Screening for Nonparametric and Semiparametric Models by Marginal Empirical Likelihood.
We consider an independence feature screening technique for identifying explanatory variables that locally contribute to the response variable in high-dimensional regression analysis. Without requiring a specific parametric form of the underlying data model, our approach accommodates a wide spectrum of nonparametric and semiparametric model families. To detect the local contributions of explana...
متن کاملModel-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis.
This work is concerned with marginal sure independence feature screening for ultra-high dimensional discriminant analysis. The response variable is categorical in discriminant analysis. This enables us to use conditional distribution function to construct a new index for feature screening. In this paper, we propose a marginal feature screening procedure based on empirical conditional distributi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of statistics
دوره 41 4 شماره
صفحات -
تاریخ انتشار 2013